EXPLORE ROBOTICS – CISC 1003

Topics

- Class syllabus
- Introduction to Robots
- Introducing the virtual environment

Course Syllabus

<u>Course Syllabus</u>

Course Syllabus

- Tzipora Halevi, Assistant Professor email: <u>Halevi@sci.Brooklyn.cuny.edu</u> Office Location: Ingersol 2156A
- Office hours: Tuesdays, Thursdays 3:30 4:30 pm

Course Syllabus

- Online Course Webpage: <u>http://thalevi.github.io/CISC1003</u>
 - Course has 6 units. Each unit includes:
 - 1-2 Lectures
 - 1-2 virtual labs
 - 1-2 assignments

Course Conflicts

- This class does not support conflicts with other classes/activities
- Attendance is mandatory
- We will not be accommodating midterm/final exam conflicts due to taking overlapping class

Course Syllabus (Cont.)

- Attendance: This is a hands-on course. There is no option of making up missed labs.
- We will be working with the virtual lab online:
 - <u>VEX CODE VR</u>
- We will be creating programs with:
 - <u>VEX Virtual Lab</u>

Course Syllabus (Cont.)

- We will also be working with the EV3 robot
 - EV3 user guide
 - EV3 help
 - EV3-Introduction to Programming
 - EV3 activities
 - EV3 Building Instructions

Books

- Books:
 - Elements of Robotics, Mordechai Ben-Ari and Francesco Mondada
 - https://link.springer.com/book/10.1007/978-3-319-62533-1
 - Direct Download Link: <u>https://link.springer.com/content/pdf/10.1007%2F978-3-319-62533-1.pdf</u>

Books

Books:

Introduction to Autonomous Robots, Nikolaus Correll

- v1.9, March 6, 2020, Magellan Scientific ISBN-13: 978-0692700877
- Direct Download Link: <u>https://github.com/correll/Introduction-to-Autonomous-</u> <u>Robots/releases/download/v1.9.2/book.pdf</u>

Books

- Books:
 - The Robotics Primer, Mataric, 2007
 - Publisher: The MIT Press (September 30, 2007) ISBN-10: 026263354X
 ISBN-13: 978-0262633543

Student Introduction

- Please take a minute to introduce yourself:
- Name
- Year
- Department/Major
- Why are you taking robotics

Questions?

Unit A - Introduction to Robots

- Why study robotics?
- What is a robot?
- Robots in society
- Robot components
- Introduction to the course robots

Why study robotics?

- Introduction to computational aspects of robotics
- . Interdisciplinary related to other disciplines
 - Artificial Intelligence, Computer Vision, Control Systems, Neuroscience, Biology
- Instant feedback
 - Robots moves, makes noises, etc.
- Developing field
 - Robots will change the world we live in
 - Potential future career path...

https://edspace.american.edu/perf683/2015/10/02/how-easy-would-it-be-for-a-robot-to-takeover-your-job/

What is a robot?

 "A robot (also called a droid) is a machine —especially one programmable by a computer— capable of carrying out a complex series of actions automatically." – Wikipedia

What is a Robot?

- "Carrying out actions automatically."
 - This is a key element in robotics
 - but also in many other simpler machines called automata.
 - The difference between a robot and a dishwasher is in the definition of what a "complex series of actions" is.
 - Is washing clothes composed of a complex series of actions or not?
 - Is flying a plane on autopilot a complex action? Is cooking bread complex?
 - For all these tasks there are machines that are at the boundary between automata and robots.

What is a Robot?

- "Programmable by a computer" is another key element of a robot
 - Some automata are programmed mechanically and are not very flexible.
 - On the other hand, computers are found everywhere
 - so it is hard to use this criterion to distinguish a robot from another machine.

What is a Robot?

- A crucial element of robots that is not mentioned explicitly in the definition is the use of *sensors*.
- Most automata do not have sensors and cannot adapt their actions to their environment
- Sensors are what enable a robot to carry out complex tasks.

What is a robot?

- Robots can be autonomous or semiautonomous
- can refer to both physical robots and virtual software agents
- We focus on "AUTONOMOUS" mobile robots.
 - These robots can be considered "agents" in the physical world...

Autonomy

- What is an autonomy (autonomous)?
- Derived from ancient greek:
 - Auto = self, nomos = "law"
 - "one who gives oneself one's own law"
- Be independent, free of constraints
- Able to act on ones own initiative
- For robots ==?
 - No REMOTE CONTROL!

Agents

- What is an agent?
- Derived from the latin word "AGERE" (todo).
- Acts on behalf of some other entity to achieve goal.
- Depends on the context: Real estate agent, chemical agent, etc.

Agents

- Autonomous Agent:
 - An agent that works on behalf of someone else
 - but can make decisions on its own
 - guided by feedback (for example, from its sensors).

What is a robot? (Cont.)

• Our definition of robot (for our purposes):

- An autonomous agent, acting independently.
 Our environment is the real world.
- The robot can sense its environment (including its own internal state)
 - and act on it to achieve pre-defined goals.
- Robotics: The study of robots
 - their design, construction, capabilities and purpose.

BASIC CATEGORIES FOR ROBOTS

TWO BASIC CATEGORIES OF ROBOT OPERATION

Robots History

- From the Slavic word robota ("forced laborer")
- First applied as a term for artificial automata in a 1920 play
 - R.U.R. (Rossum's Universal Robots), by the Czech writer, Karel Čapek
- Self-operating machines date back to the ancient China, Greece and Ptolemaic Egypt.
 - Resembling humans and animals

Robots History

- Isaac Asimov, scientist and Sci-Fi author coined the word "Robotics" to describe the field of study.
- Asimov proposed in "Runaround" (1942) the 3 Laws of Robotics

Asimov's laws of robotics

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey any orders given to it by human beings
 - except where such orders would conflict with the First Law.
- A robot must protect its own existence
 - as long as such protection does not conflict with the First or Second Law.

Robots History

- What was the goal of these rules?
 - Ensure that robots always serve and obey humans
- Who broke these rules?
 - Hollywood broke these rules in "The terminator" [1984], "Transformers" [2007] movies

The First Robots

• Grey Walter's Tortoises (1940):

- Simulated biological systems (biomemetic).
- Machines with simple sensors that could:
 - React to light detect/follow/avoid light.
 - Track/Move/Avoid obstacles.
 - Feed (recharge batteries) robots could find their way to a recharging station when they ran low on battery power

* http://cyberneticzoo.com/cyberneticanimals/elsie-cyberneticanimals/elsie/

The First Robots

- Grey Walter's Tortoises (1940):
 - Simple reasoning:
 - Reactive control using a collection of prioritized "reflexes".
 - Could still lead to complex behavior (emergent phenomena).

^{*} http://cyberneticzoo.com/cyberneticanimals/elsie-cyberneticanimals/elsie/

The First Robots (cont.)

- Braitenberg's vehicles (1984):
 - Not actually built (by him) but proposed.
 - Started out with a single motor and a single light sensor
 - gradually progressed to more motors and more sensors
 - and more interesting connections between them.

The First Robots (cont.)

- Braitenberg's vehicles (1984):
 - Excitatory and Inhibitory Connections
 - Stronger signals could induce stronger response.
 - For example, a light sensor could be connected directly to the wheels
 - so the stronger the light, the faster the robot moved, or even the inverse of the strength.

Artificial Intelligence (AI)

- The study of "intelligent agents"
 - "devices that perceive their environment, take actions to maximize their chance of success at some goal"
 *Wikipedia
- Field created in 1956
 - Minksy, McCarthy, Newell, Simon
 - Produced "Ground breaking" programs that could:
 - Play and win checkers, solve word problems, prove logical theorems, speak English.

Early AI Inspired Robots

- Shakey the robot (66 72)
 - First general-purpose mobile <u>robot</u> to use "reason"
 - Could analyze commands, break them down into basic chunks by itself.
 - Used a camera & bumper sensors to create a "model" of it's environment to help it create and execute plans.

Early AI Inspired Robots

• HILAIRE(1970's)

 Camera, ultrasound sensors, laser rangefinder.

Al Insired Robots (cont.)

- Rover (60's current):
 - A space exploration vehicle
 - Some were fully autonomous
 - Camera and Ultrasound

<u>* http://cyberneticzoo.com/cyberneticanimals/1977-hilare-autonomous-mobile-robot-french/</u> ** https://en.wikipedia.org/wiki/Rover_(space_exploration)

Robots History

<u>History of Robots</u>

Robots Today

Sophia the Robot

Robots Today and in the Future

- If a job is repetitive
 - Only requires basic direction following and decision making skills
- => A robot can AND will wind up doing it.
 - Corporations are profit driven.
 - Machines will replace humans

Future of Robotics

You may also like

Lifehacker This Is How Each Region Of The US Will Respond to Climate Change

Robots Are Already Replacing Human Workers at an Alarming Rate

Future of Robotics (cont.)

ME Q SEARCH

The New York Times

TECHNOLOGY

Robots Will Take Jobs, but Not as Fast as Some Fear, New Report Says

By STEVE LOHR JAN. 12, 2017

600

Future of Robotics (cont.)

By 2021, robots will have eliminated 6% of all jobs in the US, starting with customer service representatives and eventually truck and taxi drivers. That's just

ROBOT COMPONENTS

Robot Components

- Reminder:
 - For our purposes, a robot is an autonomous agent, acting independently. Our environment is the real world.
 - The robot can sense its environment (including its own internal state)
 - and act on it to achieve pre-defined goals.

Robot Components

- The robot needs to have:
 - A physical body robots act in the physical world
 - Sensors
 - receive information from the outside world
 - A controller
 - Includes a computer for the needed computations

Robot Components

- The robot needs to have (cont.):
 - Actuators and effectors devices that enable the robot to affect the environment
 - By exerting forces upon it or moving through it
 - Include artificial muscles and electric motors
 - Power Source batteries, solar cells, etc. Multiple power sources can be used together

Robot Components (cont.)

*https://en.wikipedia.org/wiki/Intelligent_agent

MICROCONTROLLER

BASIC MICROCONTROLLER COMPONENTS

BRIGHT IDEA TO MACHINE LANGUAGE TRANSLATION

TRANSLATED ROBOT SKELETON

Robot Languages

COMPILER AND INTERPRETER TRANSLATION

- Machine (Binary)
- Assembly
- Puppet Mode
- Graphical Programming

LAB

Let's start working with robots!

Vexcode VR

- We will be working with the virtual lab online:
 - VEX CODE VR
 - <u>Getting-started-with VEXcode VR</u>
- We will be creating programs with:
 - VEX Virtual Lab

Course Syllabus (Cont.)

- We will also be working with the EV3 robot
 - EV3 user guide
 - EV3 help
 - EV3-Introduction to Programming
 - EV3 activities
 - EV3 Building Instructions

Virtual LAB

Let's start working with robots!

