CISC 1003 – EXPLORING ROBOTICS

ROBOT CONSTRUCTION: EFFECTORS AND ACTUATORS

Arms, Legs, Wheels, Tracks and What Really Drives Them

https://www.robotshop.com/blog/en/how-do-i-choose-appropriate-actuators-6903

Effectors

- Effector: any device on a robot that has an effect (impact or influence) on the environment
 - Wheels on a mobile robot
 - Or legs, wings, fins...
 - Whole body might push objects
 - Grippers on an assembly robot
 - Or welding gun, paint sprayer
 - Speaker, light, tracing-pen
- The controller sends commands to the effectors
 - To perform a desired task

Replicating fossil paths with toilet roll [Prescott & Ibbotson (1997)]

- A spiral 'foraging' trail generated by the robot trace-maker.
 - Control combines thigmotaxis (stay near previous tracks) & phobotaxis (avoid crossing previous tracks)
 - Thigmotaxis: motion in response to a touch stimulus
 - Phobotaxis: change in the direction of locomotion in response to a given stimulus

Replicating fossil paths with toilet roll [Prescott & Ibbotson (1997)]

ACTUATORS

Actuators

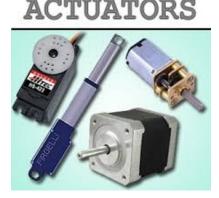
- Actuator: the mechanism that enables the effector to execute an action or movement.
 - In animals and humans:
 - muscles and tendons are the actuators
 - make the arms and legs and the backs do their jobs.
 - In robots:
 - actuators include electric motors and various other technologies.
 - Connected via transmission:
 - System gears, brakes, valves, locks, springs...

Actuators

<u>Actuators</u>

Effectors and Actuators

- terms are often used interchangeably to mean:
 "whatever makes the robot take an action"
 - but they aren't the same thing


Effectors and Actuators

- most simple actuators control one degree of freedom
 - i.e., a single motion
 - e.g., up-down; left-right; in-out

Effectors and Actuators

- how many degrees of freedom a robot has determines how it can affect its world
 - therefor how well, if at all, it can accomplish its task
- More on D.O.F. later...

Passive vs. Active Actuation

- The action of actuators and effectors requires some form of energy to provide power.
- Some actuators use passive actuation

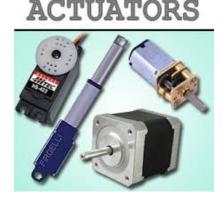
Passive Actuation

- Utilizing potential energy (usually gravity) of the effector and its interaction with the environment
 - Instead of active power consumption.
- A glider is an example of this

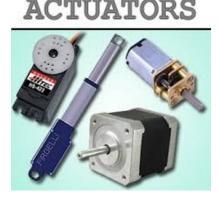
Passive Actuation

- Utilizing potential energy (usually gravity) of the effector and its interaction with the environment
 - Instead of active power consumption.
- Advantage:
 - No need for extra weight required by energy source (battery, gasoline, etc) and complicated actuators.
- Disadvantage:
 - Dependence on a motivating source that may be transient.
 - For example, weather may affect glider movement

Movement

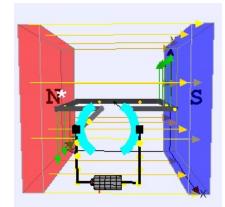


A passive walker: a robot that uses gravity and clever mechanics to balance and walk without any motors.*

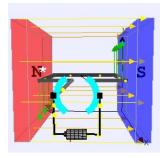

*The robotics primer, Mataric

Types of Actuators

- Electric motors
 - speed proportional to voltage
 - voltage varied (by pulse width modulation)
- Hydraulics
 - Pressurized liquid
- Pneumatics
 - Pressurized air

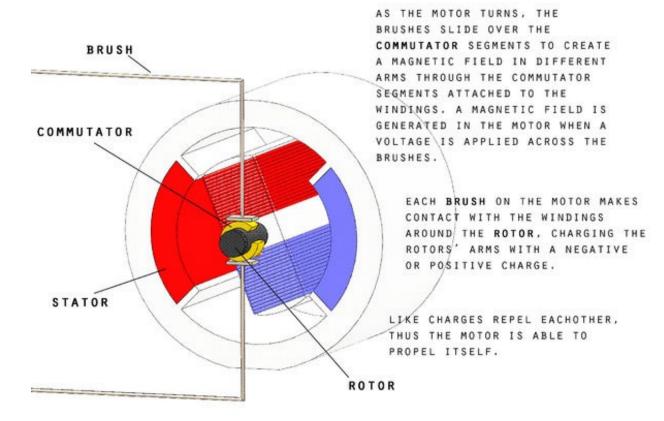


Types of Actuators


- Others, including:
 - Photo-reactive materials
 - Chemically reactive materials
 - For example, include chemicals that only affect certain ph levels in materials
 - Thermally reactive materials
 - Have materials that only react at certain temperatures
 - Piezoelectric materials
 - Crystals create a charge when pushed or pressed.
 - <u>Piezoelectricity</u>

DC Motors

- Compared with all other types of actuators, *direct current (DC) motors* are simple, inexpensive,
 easy to use, and easy to find.
- Motors have a copper wire wound in a way that creates magnetic fields
 - These "push" the rotor inside of the motor around in a circle.


DC Motors

- To make a motor run, you need to provide it with electrical power in the right voltage range.
 - Low voltage, slower movement.
 - Higher voltage, faster movement
 - but more wear on the motor and can burn out if run fast for too long.
 - Like a lightbulb on a battery. More voltage means a brighter light.

DC Motors

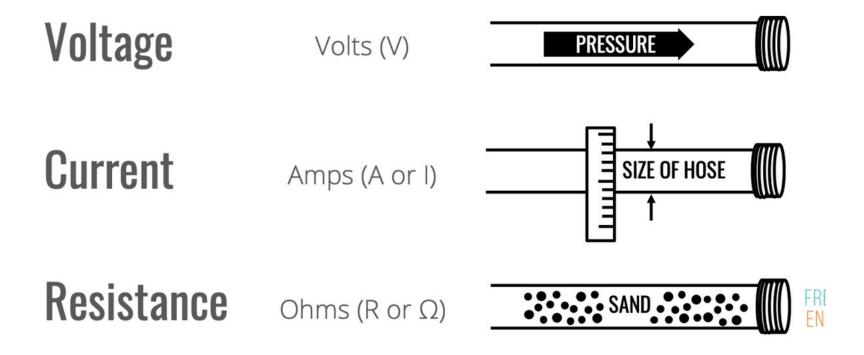
ELECTRIC MOTORS

http://makezilla.com/2016/01/21/how-to-motors/

Types of Actuators

Electric Actuator

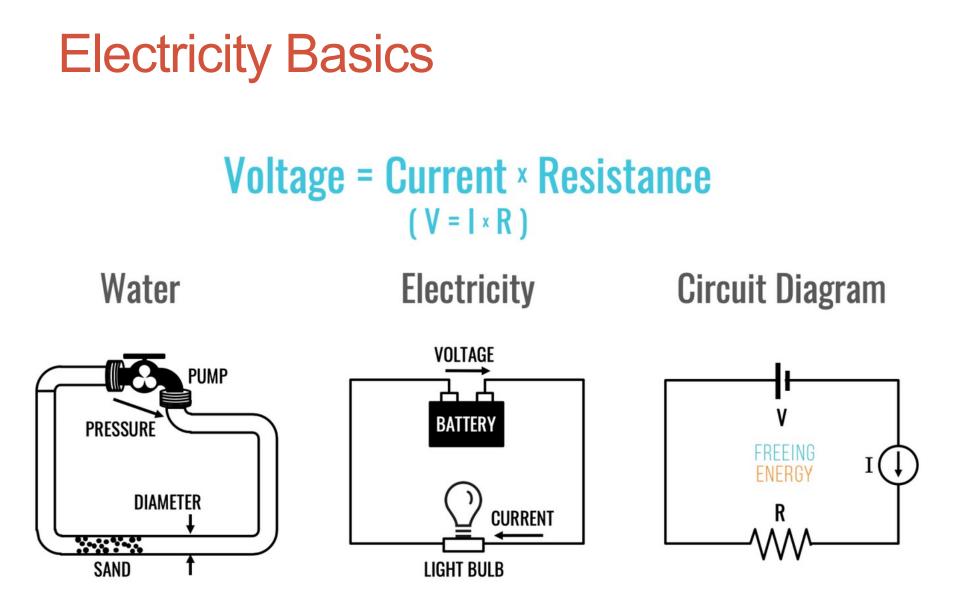
Basics of Electricity


- The three most basic components of electricity are voltage, current, and resistance.
 - VOLTAGE is like the pressure that pushes water through the hose.
 - It is measured in volts (V).
 - CURRENT is like the diameter of the hose. The wider it is, the more water will flow through.

• It is measured in amps (I or A).

 RESISTANCE is like sand in the hose that slows down the water flow.

It is measured in ohms (R or Ω).


Electricity is like a water hose

https://www.freeingenergy.com/understanding-the-basics-of-electricity-by-thinking-of-it-as-water/

Electricity is like a water hose

- Voltage, current, and resistance are all related
 - If you change one of them in a circuit, the others will change, too
 - Specifically, voltage is equal to current multiplied by resistance (V = I x R).
 - Electricity is like a water hose
 - Thinking about water:
 - if you add sand into the hose and keep the pressure the same, it's like reducing the diameter of the hose
 - => less water will flow.

https://www.freeingenergy.com/understanding-the-basics-of-electricity-by-thinking-of-it-as-water/

Ohm's Law

- Discovered in 1825
- Relates 3 key quantities in electrical circuits
 - Voltage (V)
 - Current (I)
 - Resistance (R)

 $V = I \times R$

Voltage = Current x Resistance In scientific units: Volts = Amperes x Ohms


- Voltage can be considered the FORCE which is DRIVING the total electrical flow rate (current)
 - *against* the resistance encountered in a portion of an electrical circuit.

Georg Simon Ohn

Voltage = (electrical) Current x (electrical) Resistance

Compare to pushing or cycling a bike up a hill

1) **Voltage in a circuit :** like your capacity for work to push or cycle the bike (or to 'drive' it);

2) The **resistance** is like the friction force on the tyres, the stiffness of the bike components, and the steepness of the hill;

all these factors together determine the rate of progress for a given force.

3) The rate of progress (up the hill) – is similar to the "current" in a circuit, which measures the total passage of electricity in a given time through a particular point.

Variables Affecting Actuators Choice

- Load (e.g. torque to overcome own inertia)
- Speed (fast enough but not too fast)
- Accuracy (will it move to where you want?)
- Resolution (can you specify exactly where?)

http://www.payper.com/palletizer-robots, <u>https://www.dreamstime.com/stock-illustration-robot-running-high-speed-clipping-path-included-image49547946</u>, , https://www.youtube.com/watch?v=niKo_-EgdJ0

Variables Affecting Actuators Choice

- Repeatability (will it do this every time?)
- Reliability (mean time between failures)
- Power consumption (how to feed it)
- Energy supply & its weight

www.photonics.com/a42575/Robotic_Automation_for_Solar_Cell_Manufacturing, https://www.dreamstime.com/stock-images-robotenergy-charge-image22373104

Questions?

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Gears

- Gears are wheels with teeth. Gears mesh together and make things turn.
- Gears are used to transfer motion or power from one moving part to another.

Gearing of motors

Combining different gears is used to change the speed of motors.

http://www.jsumo.com/steel-gear-bundle-08-module-6421-reduction

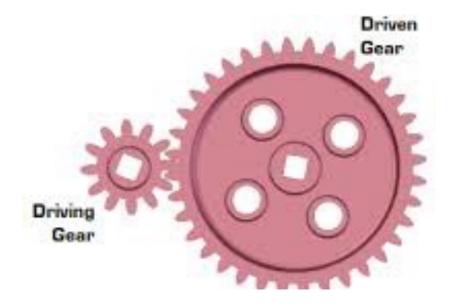
Gears

- Both the input gear (driver gear) and the output gear each have a set number of teeth
- The ratio between these two gears can be used to find the speed of the output gear
 - if the input speed to the driven gear is known.

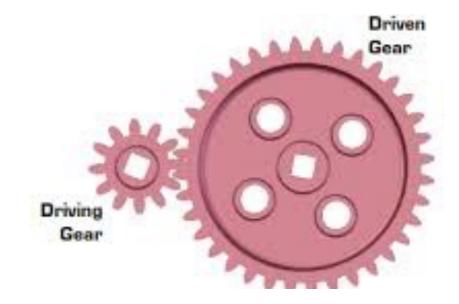
Gears

• Output Speed = (Input gear / Output gear) * Input Speed

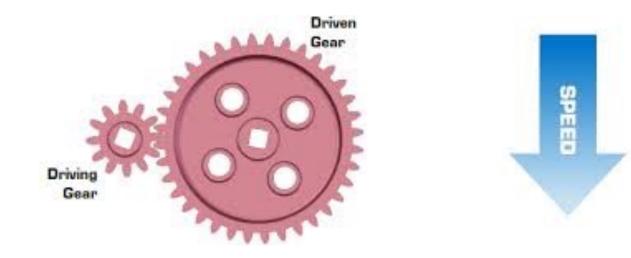
Gears - example


- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What is the output speed?

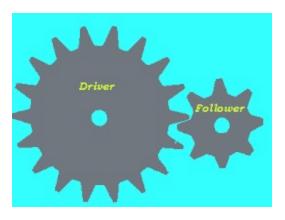
Gears - example


- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What is the output speed?
 - Output speed = (10 /20) * 100 = 50 rpm

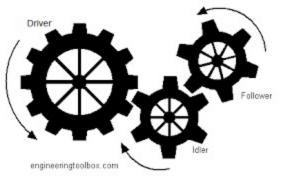
Combining Gears

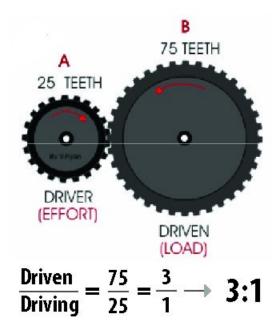

Combining Gears

• What happens to the speed?



Combining Gears


• What happens to the speed?


Gear System

Compound Gears

Gear Ratio

Gears – The Purpose

Gears are generally used for one of four different " reasons:

- To reverse the direction of rotation
- To increase or decrease the speed of rotation
- To move rotational motion to a different axis
- To keep the rotation of two axis synchronized

Questions?

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Lab time!

Let's work with our virtual robots!

