CISC 1003 -EXPLORING ROBOTICS

Motors

- Compared with all other types of actuators, *direct current (DC) motors* are simple, inexpensive,
 easy to use, and easy to find.
- Motors have a copper wire wound in a way that creates magnetic fields
 - These "push" the rotor inside of the motor around in a circle.

Motors

- To make a motor run, you need to provide it with electrical power in the right voltage range.
 - Low voltage, slower movement.
 - Higher voltage, faster movement
 - but more wear on the motor and can burn out if run fast for too long.
 - Like a lightbulb on a battery. More voltage means a brighter light.

Motors

ELECTRIC MOTORS

- Gears are wheels with teeth. Gears mesh together and make things turn.
- Gears are used to transfer motion or power from one moving part to another.

Gearing of motors

 Combining different gears is used to change the speed and torque (turning force) of motors.

http://www.jsumo.com/steel-gear-bundle-08-module-6421-reduction

Gears – The Purpose

- Sports cars go fast (have speed) but cannot pull any weight.
- Big trucks can pull heavy loads (have power), but cannot go fast.
- Gears cause this.
 - Gears increase or decrease the power or speed,

Compound Gears

- Compound gears are used in engines, workshop machines and in many other mechanical devices.
- In the diagram, gear 'A' is actually two gears attached to each other
 - and they rotate around the same center.
- Compound gears may be used so that the final gear in a gear train rotates at the correct speed

Compound Gears

https://www.clevehill.org/cms/lib/NY02214126/Centricity/Domain/246/Gears%20lesson.pdf

SOME PHYSICS

http://theconversation.com/physics-is-taught-badly-because-teachers-struggle-with-basic-concepts-86083

- Energy is the ability to do work
- Measured in Joules
- Work: The action of a *force* to cause *displacement* of an object
 - Work(J) = Force (N) x distance (m)
 - 1 joule = 1 Newton * 1 meter

- Here, in this figure, we can say that the work done upon the weight against gravity is
- (Mass × acceleration due to gravity) ×
 Displacement

$$= (25 \times 2 \times 9.8) \times 2 = 980$$
 J

- Who has done the most work?
 - Work = Force x Distance

http://www.clker.com/clipart-man-push.html

Who has done the most work?
 – Work = Force x Distance

https://www.slideshare.net/gurustip/energy-work-power-10148820

- Torque is a measure of the force that can cause an object to rotate about an axis.
- TORQUE measures ROTATIONAL FORCE
- TORQUE = FORCE x DISTANCE = FORCE x Radius
 - RADIUS of the rotational circumference.

- Torque is the twisting force or rotational force applied by your hand that causes rotation
- You apply torque three times when you simply open a locked door:
 - turning the key, turning the doorknob, and pushing the door open so it swings on its hinges!

https://www.forcegauge.net/en/knowhow/force/top/_torque https://physics.stackexchange.com/questions/66976/how-much-torque-does-it-take-to-turn-a-doorknob https://efcms.engr.utk.edu/ef151-2019-08/sys.php?f=bolt/bolt-main&c=class-4-4&p=torque

- Example: opening a door:
 - Torque is the angular force that the person exerts

- What if your door knob was closer to the hinge?
 - But you used the same force to open it?
 - It would be much harder to open
 - Torque is smaller
 - TORQUE = FORCE x DISTANCE = FORCE x Radius

Gearing of motors

- Combining different gears is used to change the speed and torque (turning force) of motors.
- Work, as defined in physics, is the product of force and distance.
 - Work = force × distance
 - Distance moved in the direction of the force
- Gears rotate around their axis in a certain velocity
 - Rotational Velocity is specified in Rotations Per Minute.

Gearing of Motors

- Torque provided by motor is typically constant
- For a wheel on the ground, *torque* needed to turn wheel equals to overcome friction
 - $Torque = F_f * Radius$
- For a larger wheel, smaller rotational force will be provided by same engine
 - Harder to turn larger wheels
 - Think of a truck vs. car, who has the bigger engine?

- How do gear ratios work?
- Gears the basics
- Gear ratios using Lego

Increase Torque/Reduce Speed

- Both the input gear (driven gear) and the output gear each have a set number of teeth
- The ratio between these two gears can be used to find the torque and speed of the output gear
 - if the input torque/speed to the driven gear is known.

- Output Speed = (Input gear / Output gear) * Input Speed
- Output Torque = (Output gear / Input gear) * Input Torque

Gears - example

- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What are the output speed and torque?

Gears - example

- A motor is attached to a 10 tooth spur gear
 - Gear spins at 100 rpm (rotations per minute)
 - Gear has a torque of 1 joule
- 20 tooth gear attached to the 10 tooth gear
- What are the output speed and torque?
 - Output speed = (10 /20) * 100 = 50 rpm
 - Output torque = (20 / 10) * 1 = 2 joules

Gears for Weight Lifting

Weight Lifting Test

Combining Gears

Combining Gears

- What happens to the speed?
- What happens to the torque?

Combining Gears

- What happens to the speed?
- What happens to the torque?

http://klinikrobot.com/product/gear-sets/plastic-gear-fs5-0508-000-gear-14-32t.html

Gear System

Compound Gears

Gear Ratio

Gears – The Purpose

Gears are generally used for one of four different " reasons:

- To reverse the direction of rotation
- To increase or decrease the speed of rotation
- To move rotational motion to a different axis
- To keep the rotation of two axis synchronized

Rotational and Linear Velocity

- Both wheels touch the ground and rotate at 120rpm
- Which wheel will travel further?
 - Larger wheel will travel further!
 - Can we calculate its linear velocity?

Rotational and Linear Velocity

- Rotational Velocity (RV) to Linear Velocity (LV) conversion:
 - Find the Circumference (C) of the circles:
 - $C = 2 \times \pi \times r$ inches (where r is the radius)

• Where r = radius

• Linear Velocity = C x Rotational Velocity

RV to LV conversion:

- Find the Circumference (C) of the circles:
 - $C = 2 \times \pi \times r$ inches (where r is the radius)
- Larger circle: $C_1 = 2 \times \pi \times 6 = 37.70$ inches
- Smaller circle: $C_2 = 2 \times \pi \times 3 = 18.85$ inches

RV to LV conversion:

- Linear Velocity = C x Rotational Velocity (120 rpm speed of both circles) Larger wheel:
 - $V_l = 37.70 * 120 = 4524$ inches/min
 - Smaller wheel:
 - $V_2 = 18.85 * 120 = 2262 inches/min$

Rotational and Linear Velocity

- <u>Note:</u>
 - <u>Rotational Velocity</u> is specified in Rotations Per Minute.
 - <u>Linear Velocity</u> is usually specified in Feet Per Minute

- Tangenial and Linear Velocity
- Tangential velocity is the linear speed of any object moving along a circular path
- Tangential velocity is the linear component of the speed of any object moving along a circular path.
 - The object moves at a distance r from the center
 => the body's velocity is directed tangentially at any instant.

Lab time!

Let's work with our robots!

