EXPLORE ROBOTICS – CISC 1003

CISC1003 – UNIT C LOCOMOTION

http://artimusmarching.com/locomotion/

Topics

- Modes of Locomotion
- Algorithm
- Multitasking

Locomotion

- Locomotion = locus (place) + motion
- Locomotion refers to the way a body moves
 - from place to place.
- A fundamental function of humans, animals
 - Acquired through training
 - Requiring significant "brain power"
- It's generally the first challenge for a robot
- Many modes of locomotion exist

Modes of Locomotion

- Legs:
 - Walking, crawling, climbing, jumping, hopping etc.
- Wheels:
 - Rolling
- Arms:
 - Swinging, crawling, climbing, lifting
- Wings:
 - Flying
- Flippers:
 - Swimming

Modes of Locomotion

- Most common, legged vs. Wheeled
- Benefits and challenges:
 - Wheeled:
 - Most efficient use of power, low DOFs.
 - Legged:
 - Large DOFs, challenge of stability.

Stability

- "the property of a body that causes it when disturbed from a condition of equilibrium or steady motion to develop forces or moments that restore the original condition "
 - Webster dictionary
- Robots need to be stable
 - Not to fall over easily or wobble

- Static stability: robots can stand still without falling over
 - maintain upright without constant active control
- Are humans statically stable?
 - We as humans are not statically stable!
 - Fall if fainting, etc.

- Static stability: robots maintain upright without constant active control
 - Maintained when center of gravity (COG) is above a certain horizontal region
 - Region called support polygon
 - horizontal region over which the center of mass must lie to achieve static stability
 - Statically stable walking is slow, energy inefficient

- **Dynamic stability**: robots must actively balance or move to maintain stability
 - Two legged walking
 - alternates between swing and stance phase

https://www.protokinetics.com/2018/11/28/understanding-phases-of-the-gait-cycle/

- A statically stable robot can use dynamically stable walking to better use energy
 - tradeoff between stability/speed.

Gaits

- The way a robot moves by using a particular pattern of footfall
- Depending on the number of legs and choice of gait

Example of Robot Gaits

- 2 legged:
 - alternating swing and stance phases.
- 4 legged:
 - Diagonal walking: the feet on opposite sides move forward in sequence

Robot Gaits Examples

- 6 legged: alternating tripod gait vs. ripple gait.
 - Tripod gait: three legs move at a time
 - while the other three remain stationary
 - https://www.youtube.com/watch?v=nRtJu4qrqn0
 - Ripple gait: two legs from opposite sides shift each time
 - https://www.youtube.com/watch?v=3_Qk5svpUc0

Gaits

- Consideration for desirable robot gaits
 - Stability, speed, energy
 - Robustness, simplicity

Wheels and Steering

- Wheels are the choice of locomotion in robotics
 - Advantages of wheels:
 - Highly efficient
 - Simple to control
- Most wheeled robots are not holonomic

Wheels and Steering

- *Motion planning* = following a specific trajectory
- *Navigation* = moving from one place to another
- Which is more complex?
 - Many times motion planning more complex
 - Need to follow more detailed plan

ALGORITHMS

Go Beyond Locomotion - Dancing Automaton

- One or more robots come together
 - With music, dressed in costume
 - Moving in creative harmony.
- Need to develop an algorithm.
- Robot will be multitasking
 - allowing the program to perform more than one computer task at a time

https://www.youtube.com/watch?v=Fg0AGH_TaiQ

Algorithm

ComputerHope.com

- A step-by-step sequence of instructions for carrying out some task.
- Examples of algorithms outside of computing:
 - Cooking recipes
 - Dance steps
 - Proofs (mathematical or logical)
 - Solutions to mathematical problems
- Often, there is more than one way to solve a problem.

Algorithms -Solving problems

- In computing, algorithms are synonymous with problem solving.
- How To Solve It [George Polya, 1945]
 - Understand the problem
 - Devise a plan
 - Carry out your plan
 - Examine the solution

Algorithms – Polya[1945]

- Understand the problem:
 - Understand all the words, goal
 - Create a picture or a diagram to help solve
 - Is there enough information to solve the problem?
- Devise a plan
 - Choose a strategy: guess and check, eliminate possibilities, etc.

Algorithms – Polya[1945]

- Carry out your plan
 - Write the program, run the system
- Examine the solution
 - Look back, did you solve the problem?

Algorithms - features

- Speed (number of steps)
- Memory (size of work space)
- Complexity (can others understand it?)
- Parallelism (can you do more than one step at once?)

CASE STUDY – BOIDS ALGORITHM BY CRAIG REYNOLDS

Algorithm - Boids by Craig Reynolds

- Algorithmic for coordinated animal motion
 - Models steering behaviors
 - for animated flocking creatures.
 - Allowed individual elements to navigate their digital environments in a "life-like" manner
 - with strategies for different actions:
 - seeking, fleeing, wandering, arriving, pursuing, evading, path following, obstacle avoiding, etc.

Algorithm - *Boids* by Craig Reynolds (cont.)

- System has multiple characters
 - each steering according to simple locally-based rules,
- Surprising levels of complexity emerge
 - the most famous example being Reynolds' "boids" model for "flocking"/"swarming" behavior.

Algorithm - *Boids* by Craig Reynolds (cont.)

- Simple steering behaviors:
 - Separation:
 - avoid crowding neighbors
 - Alignment:
 - steer towards average heading of neighbors

- Cohesion:
 - steer towards average position of neighbors

https://www.red3d.com/cwr/boids/

Algorithm - *Boids* by Craig Reynolds (cont.)

- An animated short featuring the boids model called Stanley and Stella in: Breaking the Ice was created
 - <u>Boids</u> video

LAB

• Let's start working with virtual robots!