EXPLORE ROBOTICS – CISC 1003

DEGREES OF FREEDOM

REVIEW – LOCOMOTION AND DEGREES OF FREEDOM

Locomotion

- Locomotion = locus (place) + motion
- Locomotion refers to the way a body moves
 - from place to place.
- A fundamental function of humans, animals
 - Acquired through training
 - Requiring significant "brain power"
- It's generally the first challenge for a robot
- Many modes of locomotion exist

Modes of Locomotion

- Most common, legged vs. Wheeled
- Benefits and challenges:
 - Wheeled:
 - Most efficient use of power
 - Low number of Degrees of Freedom (DOFs).
 - Legged:
 - Large DOFs, challenge of stability.

Locomotion and Manipulations

- Choice of effectors and actuators sets the limits on what the robot can do
- Usually categorized as locomotion or manipulation
 - Locomotion: vehicle moving itself
 - Manipulation: An arm moving things
- In both cases can consider the *degrees of freedom* in the design

• The number of independent parameters that define a systems' configuration or state

- Degrees of Freedom of a point in space:
 - # of independent coordinates required to define position and orientation
 - How many such points?

- Degrees of Freedom of a point in space:
 - # of independent coordinates required to define position and orientation
 - How many such coordinates?
 - 3 coordinates -x, y, and z

- Degrees of Freedom of a *rigid body* in space:
 - 3 linear movements across x, y and z dimensions
 - Three rotational movements about axis x, y and z
 - Called roll, pitch, and yaw

- Definition: How many independent factors needed to specify the motion of the system?
 - The specific number of axes that a rigid body is able to freely move in three-dimensional space
 - For robots: directions of independent motions

- For a *rigid object in space* have:
 - The body can move straight in three dimensions:
 - Without rotation
 - on the X, Y and Z axes
 - A.K.A. Translational degrees of freedom
 - Also, it can change orientation between those axes though rotation
 - usually called *pitch, yaw and roll*
 - Rotational degrees of freedom
 - Total of 6 degrees of freedom

D.O.F. of a Rigid Body in space

https://en.wikipedia.org/wiki/File:6_degrees_freedom.png

- How can we see this?
- Let's say we have a square object

D.O.F. of a Rigid Object in Space

We can first set the middle point of the cube

3 Degrees of freedom – x,y and z

- Then, we can rotate the cube around each of the axis
 - pitch, yaw and roll

D.O.F. of a Rigid Body in Space

- Alternatively, we can try to position each of the corners
 - How many D.O.F. do we have?

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B
 - What is the constraint on B?
 - B can be located on a sphere
 - The sphere radios is the length between A and B

- Point A can have 3 values (x,y,z)
- Once point A is set, we want to fix point B
- However, the length between A and B is constant
 - So only two angles can be fixed
 - We have one constrain on the location of B

- Once A and B are fixed, only one angle is possible for point C
 - One additional degree of freedom
 - We have two constraints on the location of C
 - All points will be on a circle with consant radius
 - One D.O.F. = angle

- How many possibilities for point D?
 - Zero D.O.F. only one possible location

- # of D.O.F. = $\sum_{i=1}^{n} (Freedom \ of \ Points) # of \ independent \ constraints$
- Since robot is made of rigid bodies:
 # of D.O.F. = ∑ (Freedom of bodies) # of independent constraints

Point	Coordinates	Indep. constraints	# Actual freedoms
A	?	?	
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
A	3	0	?
В			
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	?	?	
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	?
С			
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	2
С	?	?	
D			

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	2
С	3	2	?
D	?	?	

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0
Total Degrees of Freedom			?

Point	Coordinates	Indep. constraints	# Actual freedoms
А	3	0	3
В	3	1	2
С	3	2	1
D	3	3	0
Total Degrees of Freedom			6

- How many degrees of freedom will be in 4dimensional space?
 - 10 degrees of freedom

- # of D.O.F. = $\sum_{i=1}^{n} (Freedom \ of \ Points) # of \ independent \ constraints$
- Since robot is made of rigid bodies:
 # of D.O.F. = ∑ (Freedom of bodies) # of independent constraints

- How many degrees of freedom are for an object on a linear space?
 - I.e., a car
- Linear space is a 2D space
- 3 degrees of freedom
 - 2 on the linear space (x,y)
 - One is the angle

Degrees of Freedom – 2D space

https://www.smlease.com/entries/mechanism/what-is-degree-of-freedom-dof-in-mechanics/ https://www.quora.com/How-many-degrees-of-freedom-of-rigid-body

- Roll, pitch, yaw:
 - Degrees of freedom used for orientation
 - Yaw refers to the direction in which the body is facing
 - i.e., its orientation within the xy plane
 - *Roll* refers to whether the body is upside-down or not
 - i.e., its orientation within the yz plane
 - Pitch refers to whether the body is tilted
 - i.e., its orientation within the xz plane

https://en.wikipedia.org/wiki/Six_degrees_of_freedom

- <u>Degrees of Freedom</u>
- Example: <u>Degrees of Freedom 6 axis robot</u>

Controllable D.O.F.'s

- If the object can move in each direction of the D.O.F., it is *Holonomic*
 - All are controllable
- For this, it needs to have an actuator in each direction

- How many D.O.F. to specify movement of a vehicle on a flat surface?
 - Three: X,Y and yaw (turn in x-y dimension)
- How many Controllable D.O.F.'s?
 - In which direction can driver drive the car?

http://www.f6tech.com/our-solution/, http://www.formula1-dictionary.net/motions_of_f1_car.html

- How many D.O.F. to specify movement of a vehicle on a flat surface?
 - Three: X,Y and yaw (turn in x-y dimension)
- How many Controllable D.O.F.'s?
 - In which direction can driver drive the car?
 - X and yaw

http://www.f6tech.com/our-solution/, http://www.formula1-dictionary.net/motions_of_f1_car.html

- Is a car *Holonomic*?
- Yes, a car is holonomic
- No, a car is not holonomic
- Depending on the car design

- Is a car *Holonomic*?
- Yes, a car is holonomic
- No, a car is not holonomic
- Depending on the car design
- Why?
 - A car can not drive sideways not holonomic
 - Only controllable in two dimensions

Robot's Variables Affecting D.O.F.

- Number of joints/articulations/moving parts
 - If parts are linked, fewer parameters needed to specify them.
- Number of Individually controlled moving part
 - Need parameters for each to define configuration
 - Often described as 'controllable degrees of freedom'
 - But some may be *redundent*
 - Two movements may be in the same axis

D.O.F. OF A ROBOT

- # of D.O.F. = $\sum_{i=1}^{n} (Freedom \ of \ Points) # of \ independent \ constraints$
- Since robot is made of rigid bodies:
 # of D.O.F. = ∑ (Freedom of bodies) # of independent constraints

- Where do the constraints come from?
 - For a robot?
 - Typically, from joints

ROBOTS JOINTS

Robot Joints

- Revolute Joint:
 - 5 constraints
 - 1 Degree of freedom
 - Angle of rotation
 - <u>Revolute Joint</u>

Revolute joint – Degrees of Freedom

https://www.mathworks.com/help/physmod/sm/mech/ref/revolute.html

Robot Joints

- Prismatic joint:
 - A.K.A. linear joint
 - 5 constraints
 - 1 Degree of freedom
 - Prismatic Joint

Prismatic joint

https://www.mathworks.com/help/physmod/sm/mech/ref/cylindrical.html

Prismatic Joint

https://fastenerengineering.com/what-is-a-prismatic-joint/

Robot Joints

- Universal Joint:
 - 4 constraints
 - 2 degrees of freedom
 - <u>Universal joint</u>, <u>Universal joint 2</u>

Universal Joint

https://en.wikipedia.org/wiki/Universal_joint

Universal Joint

A universal idint may also known as a universal sounling a

Robot Joints

- Spherical joint:
 - 3 constraints
 - 3 degrees of freedom
 - Spherical Joint

Spherical Joint

 https://www.researchgate.net/publication/311414943_Research_on_Oscillation-Free_Robust_Control_for_Active_Joint_Dental_Automation/figures?lo=1

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	?	?
Prismatic	?	?
Universal	?	?
Spherical	?	?

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	?	5
Prismatic	?	5
Universal	?	4
Spherical	?	3

D.O.F. of Robot Joints

Joint Type	D.O.F.	# CONSTRAINTS
Revolute	1	5
Prismatic	1	5
Universal	2	4
Spherical	3	3

Robot's D.O.F.

- Total D.O.F. = Σ (freedom of body parts) –
 # of independent constraints
- N = # of bodies, not including ground
 J = # of joints
 m = 6 for spatial bodies, 3 for planar

•
$$D.O.F. = m * N - \sum_{i=1}^{J} c_i$$

